HomeProductsBest SellersSemaglutide 6mg and MOTS-C 5mg...
Semaglutide 6mg and MOTS-C 5mg – Bundle
Availability: Ships today if ordered and paid by 7AM EST
Where to buy Semaglutide 6mg and MOTS-C 5mg – Bundle? Shop now for Semaglutide 6mg and MOTS-C 5mg – Bundle with exceptional quality and get more for less with our bulk sales. Quick 48-hour delivery available.
Properties
Semaglutide 6mg
Chemical Formula: C62H98N16O22
Molecular Weight: 4144g/mol
Synonyms: Semaglutide; Rybelsus; NN9535; 910463-68-2; UNII-53AXN4NNHX; NN 9535
PubChem: 56843331
CAS#: 910463-68-2
Total Amount of the Active Ingredient: 6mg (1 vial)
Shelf Life: 36 months
MOTS-C 5MG
Chemical Formula: C101H152N28O22S2
Molecular Mass: 1419.5
Synonyms: Body Protection Compound 15, Bepecin, L-Valine, glycyl-L-alpha-glutamyl-L-prolyl-L-prolyl-L-prolylglycyl-L-lysyl-L-prolyl-L-alanyl-L-alpha-aspartyl-L-alpha-aspartyl-L-alanylglycyl-L-leucyl-
CAS Number: 137525-51-0
PubChem: 994195
Total Amount of the Active Ingredient: 5mg (1 vial)
Shelf Life: 36 months
Product Quality
Lab tests are occasionally published on the website.
You can have the product you bought from us tested at any HPLC licensed testing facility and if the results are negative, we will refund the following:
Cost of HPLC test
Total amount of the order + shipping fee
Peer-Reviewed Studies
Wegovy (semaglutide): a new weight loss drug for chronic weight management
Abstract
Obesity is a growing epidemic within the USA. Because weight gain is associated with an increased risk of developing life-threatening comorbidities, such as hypertension or type 2 diabetes, there is great interest in developing non-invasive pharmacotherapeutics to help combat obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of antidiabetic medications that have shown promise in encouraging glycemic control and promoting weight loss in patients with or without type 2 diabetes. This literature review summarizes and discusses the weight loss results from the SUSTAIN (Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes), PIONEER (Peptide Innovation for Early Diabetes Treatment), and STEP (Semaglutide Treatment Effect in People with Obesity) clinical trial programs. The SUSTAIN and PIONEER clinical trials studied the use of 1.0 mg, once-weekly, subcutaneous and oral semaglutide (a new GLP-1 homolog), respectively, on participants with type 2 diabetes. The STEP trial examined the effects of 2.4 mg, once-weekly, subcutaneous semaglutide on patients with obesity. Trial data and other pertinent articles were obtained via database search through the US National Library of Medicine Clinical Trials and the National Center for Biotechnology Information. All three clinical trials demonstrated that semaglutide (injected or oral) has superior efficacy compared with placebo and other antidiabetic medications in weight reduction, which led to Food and Drug Administration approval of Wegovy (semaglutide) for weight loss.
Abstract
The glucagon-like peptide-1 receptor agonist (GLP-1RA) semaglutide is the most recently approved agent of this drug class, and the only GLP-1RA currently available as both subcutaneous and oral formulation. While GLP-1RAs effectively improve glycemic control and cause weight loss, potential safety concerns have arisen over the years. For semaglutide, such concerns have been addressed in the extensive phase 3 registration trials including cardiovascular outcome trials for both subcutaneous (SUSTAIN: Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes) and oral (PIONEER: Peptide InnOvatioN for the Early diabEtes tReatment) semaglutide and are being studied in further trials and registries, including real world data studies. In the current review we discuss the occurrence of adverse events associated with semaglutide focusing on hypoglycemia, gastrointestinal side effects, pancreatic safety (pancreatitis and pancreatic cancer), thyroid cancer, gallbladder events, cardiovascular aspects, acute kidney injury, diabetic retinopathy (DRP) complications and injection-site and allergic reactions and where available, we highlight potential underlying mechanisms. Furthermore, we discuss whether effects are specific for semaglutide or a class effect. We conclude that semaglutide induces mostly mild-to-moderate and transient gastrointestinal disturbances and increases the risk of biliary disease (cholelithiasis). No unexpected safety issues have arisen to date, and the established safety profile for semaglutide is similar to that of other GLP-1RAs where definitive conclusions for pancreatic and thyroid cancer cannot be drawn at this point due to low incidence of these conditions. Due to its potent glucose-lowering effect, patients at risk for deterioration of existing DRP should be carefully monitored if treated with semaglutide, particularly if also treated with insulin. Given the beneficial metabolic and cardiovascular actions of semaglutide, and the low risk for severe adverse events, semaglutide has an overall favorable risk/benefit profile for patient with type 2 diabetes.
Abstract
Aim: The aim of this trial was to investigate the mechanism of action for body weight loss with semaglutide.
Materials and methods: This randomised, double-blind, placebo-controlled, two-period crossover trial investigated the effects of 12 weeks of treatment with once-weekly subcutaneous semaglutide, dose-escalated to 1.0 mg, in 30 subjects with obesity. Ad libitum energy intake, ratings of appetite, thirst, nausea and well-being, control of eating, food preference, resting metabolic rate, body weight and body composition were assessed.
Results: After a standardised breakfast, semaglutide, compared with placebo, led to a lower ad libitum energy intake during lunch (-1255 kJ; P < .0001) and during the subsequent evening meal ( P = .0401) and snacks ( P = .0034), resulting in a 24% reduction in total energy intake across all ad libitum meals throughout the day (-3036 kJ; P < .0001). Fasting overall appetite suppression scores were improved with semaglutide vs placebo, while nausea ratings were similar. Semaglutide was associated with less hunger and food cravings, better control of eating and a lower preference for high-fat foods. Resting metabolic rate, adjusted for lean body mass, did not differ between treatments. Semaglutide led to a reduction from baseline in mean body weight of 5.0 kg, predominantly from body fat mass.
Conclusion: After 12 weeks of treatment, ad libitum energy intake was substantially lower with semaglutide vs placebo with a corresponding loss of body weight observed with semaglutide. In addition to reduced energy intake, likely mechanisms for semaglutide-induced weight loss included less appetite and food cravings, better control of eating and lower relative preference for fatty, energy-dense foods.
Role of MOTS-c in the regulation of bone metabolism
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
MOTS-c, the Most Recent Mitochondrial Derived Peptide in Human Aging and Age-Related Diseases
Abstract
MOTS-c, a 16 amino acid mitochondrial derived peptide, is encoded from the 12S rRNA region of the mitochondrial genome. Under stress conditions, MOTS-c translocates to the nucleus where it regulates a wide range of genes in response to metabolic dysfunction. It is colocalized to mitochondria in various tissues and is found in plasma, but the levels decline with age. Since MOTS-c has important cellular functions as well as a possible hormonal role, it has been shown to have beneficial effects on age-related diseases including Diabetes, Cardiovascular diseases, Osteoporosis, postmenopausal obesity and Alzheimer. Aging is characterized by gradual loss of (mitochondrial) metabolic balance, decreased muscle homeostasis and eventual diminished physical capability, which potentially can be reversed with MOTS-c treatment. This review examines the latest findings on biological effects of MOTS-c as a nuclear regulatory peptide and focuses on the role of MOTS-c in aging and age-related disorders, including mechanisms of action and therapeutic potential.
Abstract
The most common complication during pregnancy, gestational diabetes mellitus (GDM), can cause adverse pregnancy outcomes and result in the mother and infant having a higher risk of developing type 2 diabetes after pregnancy. However, existing therapies for GDM remain scant, with the most common being lifestyle intervention and appropriate insulin treatment. MOTS-c, a mitochondrial-derived peptide, can target skeletal muscle and enhance glucose metabolism. Here, we demonstrate that MOTS-c can be an effective treatment for GDM. A GDM mouse model was established by short term high-fat diet combined with low-dose streptozotocin (STZ) treatment while MOTS-c was administrated daily during pregnancy. GDM symptoms such as blood glucose and insulin levels, glucose and insulin tolerance, as well as reproductive outcomes were investigated. MOTS-c significantly alleviated hyperglycemia, improved insulin sensitivity and glucose tolerance, and reduced birth weight and the death of offspring induced by GDM. Similar to a previous study, MOTS-c also could activate insulin sensitivity in the skeletal muscle of GDM mice and elevate glucose uptake in vitro. In addition, we found that MOTS-c protects pancreatic β-cell from STZ-mediated injury. Taken together, our findings demonstrate that MOTS-c could be a promising strategy for the treatment of GDM.
Shipping
USA
Canada
If your shipment was seized (International Orders), we will provide a 50% discount applicable on your next purchase. Please contact us for more information.
Disclaimer
The information provided above is not intended to substitute medical advice, diagnosis, or treatment. Should you have any questions regarding a medical condition, seek the advice of your physician or a qualified healthcare provider. In no case should medical advice be disregarded or delayed because of what you have read or seen. We bear no responsibility or liability for your use of any of our research compounds and products. Please note that they are being sold for research purposes ONLY. We do NOT condone any personal use.
Note: In some cases wherein the assigned top colors are out of stock, a different top color will be used to ensure that your order will not be delayed. Should you need assistance identifying the peptide vial that you received, please send us an email at [email protected].
ALL ARTICLES AND PRODUCT INFORMATION PROVIDED ON THIS WEBSITE ARE FOR INFORMATIONAL AND EDUCATIONAL PURPOSES ONLY.
The products offered on this website are furnished for in-vitro studies only. In-vitro studies (Latin: “in glass”) are performed outside the body. These products are not medicines or drugs and have not been approved by the FDA to prevent, treat and/or cure any medical condition, ailment or disease. Bodily introduction of any kind into animals or human is strictly prohibited by law.
How Many Vials? | 1 Vial, 2 Vials, 3 Vials, 4 Vials, 5 Vials, 10 Vials, 20 Vials, 40 Vials, 100 Vials |
---|
FAQ
Semaglutide 6mg and MOTS-C 5mg Vials
How to reconstitute Semaglutide 6mg and MOTS-C 5mg – Bundle vials?
Semaglutide 6mg and MOTS-C 5mg – Bundle vials contain a peptide powder, which is typically a puck or loose bits due to shipping. To reconstitute a Semaglutide 6mg and MOTS-C 5mg – Bundle vials, researchers typically use bacteriostatic water, combining it with the peptide powder according to the specific requirements of their research protocols.
How to dose Semaglutide 6mg and MOTS-C 5mg – Bundle?
The dosing of Semaglutide 6mg and MOTS-C 5mg – Bundle in vials form will vary according to the experiment being conducted. We do not provide dosage recommendations as our products are intended for research purposes only.
How to administer Semaglutide 6mg and MOTS-C 5mg – Bundle?
There are multiple methods of administering research products that are under investigation in various studies. The choice of administration technique should align with the specific goals and design of the researcher’s study. We provide products solely for research use, we do not offer advice on administration methods.